Disruption of the Candida albicans TPS1 gene encoding trehalose-6-phosphate synthase impairs formation of hyphae and decreases infectivity.
نویسندگان
چکیده
The TPS1 gene from Candida albicans, which encodes trehalose-6-phosphate synthase, has been cloned by functional complementation of a tps1 mutant from Saccharomyces cerevisiae. In contrast with the wild-type strain, the double tps1/tps1 disruptant did not accumulate trehalose at stationary phase or after heat shock. Growth of the tps1/tps1 disruptant at 30 degreesC was indistinguishable from that of the wild type. However, at 42 degreesC it did not grow on glucose or fructose but grew normally on galactose or glycerol. At 37 degreesC, the yeast-hypha transition in the mutant in glucose-calf serum medium did not occur. During growth at 42 degreesC, the mutant did not form hyphae in galactose or in glycerol. Some of the growth defects observed may be traced to an unbalanced sugar metabolism that reduces the cellular content of ATP. Mice inoculated with 10(6) CFU of the tps1/tps1 mutant did not show visible symptoms of infection 16 days after inoculation, while those similarly inoculated with wild-type cells were dead 12 days after inoculation.
منابع مشابه
Disruption of the Candida albicans TPS2 gene encoding trehalose-6-phosphate phosphatase decreases infectivity without affecting hypha formation.
Deletion of trehalose-6-phosphate phosphatase, encoded by TPS2, in Saccharomyces cerevisiae results in accumulation of trehalose-6-phosphate (Tre6P) instead of trehalose under stress conditions. Since trehalose is an important stress protectant and Tre6P accumulation is toxic, we have investigated whether Tre6P phosphatase could be a useful target for antifungals in Candida albicans. We have cl...
متن کاملStructural and In Vivo Studies on Trehalose-6-Phosphate Synthase from Pathogenic Fungi Provide Insights into Its Catalytic Mechanism, Biological Necessity, and Potential for Novel Antifungal Drug Design
The disaccharide trehalose is critical to the survival of pathogenic fungi in their human host. Trehalose-6-phosphate synthase (Tps1) catalyzes the first step of trehalose biosynthesis in fungi. Here, we report the first structures of eukaryotic Tps1s in complex with substrates or substrate analogues. The overall structures of Tps1 from Candida albicans and Aspergillus fumigatus are essentially...
متن کاملDisruption in Candida albicans of the TPS2 gene encoding trehalose-6-phosphate phosphatase affects cell integrity and decreases infectivity.
The gene CaTPS2 encoding trehalose-6-phosphate (T6P) phosphatase from Candida albicans has been cloned and disrupted in this organism. The Catps2/Catps2 mutant did not accumulate trehalose but accumulated high levels of T6P. Disruption of the two copies of the CaTPS2 gene did not abolish growth even at 42 degrees C, but decreased the growth rate. In the stationary phase, the Catps2/Catps2 mutan...
متن کاملGlycoconjugate expression on the cell wall of tps1/tps1 trehalose-deficient Candida albicans strain and implications for its interaction with macrophages.
The yeast Candida albicans has developed a variety of strategies to resist macrophage killing. In yeasts, accumulation of trehalose is one of the principal defense mechanisms under stress conditions. The gene-encoding trehalose-6-phosphate synthase (TPS1), which is responsible for trehalose synthesis, is induced in response to oxidative stress, as in phagolysosomes. Mutants unable to synthesize...
متن کاملInteraction of Candida albicans with Fluconazole/ Clotrimazole: Effect on Hyphae Formation and Expression of Hyphal Wall Protein 1
Background and Aims: Candida albicans (C. albicans) is the most common opportunistic human pathogen. Therapeutic options for Candida infections are limited to available antifungal drugs. The aim of this study was to investigate the effects of fluconazole/clotrimazole (FLU/CLT) on C. albicans hyphae formation. Materials and Methods: We have established the effectiveness of the combination of FL...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bacteriology
دوره 180 15 شماره
صفحات -
تاریخ انتشار 1998